Quantum Knots and Lattices, or a Blueprint for Quantum Systems that Do Rope Tricks
نویسندگان
چکیده
Within the framework of the cubic honeycomb (cubic tessellation) of Euclidean 3-space, we define a quantum system whose states, called quantum knots, represent a closed knotted piece of rope, i.e., represent the particular spatial configuration of a knot tied in a rope in 3-space. This quantum system, called a quantum knot system, is physically implementable in the same sense as Shor’s quantum factoring algorithm is implementable. To define a quantum knot system, we replace the standard three Reidemeister knot moves with an equivalent set of three moves, called respectively wiggle, wag, and tug, so named because they mimic how a dog might wag its tail. We argue that these moves are in fact more ”physics friendly” than the Reidemeister moves because, unlike the Reidemeister moves, they respect the differential geometry of 3-space, and moreover they can be transformed into infinitesimal moves. These three moves wiggle, wag, and tug generate a unitary group, called the lattice ambient group, which acts on the state space of the quantum system. The lattice ambient group represents all possible ways of moving a rope around in 3-space without cutting the rope, and without letting the rope pass through itself. We then investigate those quantum observables of the quantum knot system which are knot invariants. We also study Hamiltonians associated with the generators of the lattice ambient group. We conclude with a list of open questions.
منابع مشابه
Quantum knots and mosaics
In this paper, we give a precise and workable definition of a quantum knot system, the states of which are called quantum knots. This definition can be viewed as a blueprint for the construction of an actual physical quantum system. Moreover, this definition of a quantum knot system is intended to represent the “quantum embodiment” of a closed knotted physical piece of rope. A quantum knot, as ...
متن کاملThe Bohr Atom of Glueballs
Recently Buniy and Kephart[1] made an astonishing empirical observation, which anyone can reproduce at home. Measure the lengths of closed knots tied from ordinary rope. The “double do-nut”, and the beautiful trefoil knot (Fig. 1) are examples. Tie the knots tightly, and glue or splice the tails into a seamless unity. Compare two knots with corresponding members of the mysterious particle state...
متن کاملDesigning a quantum genetic controller for tracking the path of quantum systems
Based on learning control methods and computational intelligence, control of quantum systems is an attractive field of study in control engineering. What is important is to establish control approach ensuring that the control process converges to achieve a given control objective and at the same time it is simple and clear. In this paper, a learning control method based on genetic quantum contr...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملComputational study of Anticancer Dasatinib for drug delivery systems
Dasatinib is a tyrosine kinase inhibitor (TKI) that is used to treat chronic myeloid leukemia and in the management of ulcerative colitis (UC) and to provide appropriate results in treatment. Dasatinib is significantly higher and faster than full cytogenetic and large molecular responses as compared to imatinib. In the recent study, using the NMR data, the frequency and thermochemical propertie...
متن کامل